Skip to main content

金融资产定价模型 Asset Pricing Model (Firm Value, Share, Bond)

· 3 min read

企业价值 Firm Value

企业价值公式

[i=1tCFt(1+WACC)t][\sum_{i=1}^t \frac{CF_t}{(1+WACC)^t}] [WACC=EV×re+DV×rd×(1Tc)][\text{WACC} = \frac{E}{V} \times r_e + \frac{D}{V} \times r_d \times (1 - T_c)]
  • EE:公司权益的市场价值
  • DD:公司债务的市场价值
  • V=E+DV=E+D:公司的总价值(权益 + 债务)
  • rer_e​:权益成本(如 CAPM 计算得出的股权回报率)
  • rdr_d​:债务成本(借贷利率)
  • TcT_c​:企业所得税率

股票价值 Share Value

股票公式与推导

 [PV=D11+re+D1(1+g)(1+re)2+D1(1+g)2(1+re)3+] [ PV = \frac{D_1}{1 + r_e} + \frac{D_1 (1 + g)}{(1 + r_e)^2} + \frac{D_1 (1 + g)^2}{(1 + r_e)^3} + \cdots ]

这条公式其实是个等比数列,公比为:

(1+g1+re)( \frac{1 + g}{1 + r_e} ) an=a1×qn1a_n = a_1 \times q^{n-1} [an=a×qn1=D11+re(1+g1+re)n1][ a_n = a \times q^{n-1} = \frac{D_1}{1 + r_e} \left( \frac{1 + g}{1 + r_e} \right)^{n-1} ]

根据等比数列求和公式:

a=D11+rea = \frac{D_1}{1 + r_e} q=1+g1+req = \frac{1 + g}{1 + r_e} [S=a1q][ S = \frac{a}{1 - q} ] [PV=D11+re11+g1+re][ PV = \frac{\frac{D_1}{1 + r_e}}{1 - \frac{1 + g}{1 + r_e}} ] [PV=D11+re111+g1+re=D1reg][ PV = \frac{D_1}{1 + r_e} \cdot \frac{1}{1 - \frac{1 + g}{1 + r_e}} = \frac{D_1}{r_e - g} ]

债券价值 Bond Value

债券价值公式与推导

[PVcoupons=C(1+rd)1+C(1+rd)2++C(1+rd)n][ PV_{\text{coupons}} = \frac{C}{(1 + r_d)^1} + \frac{C}{(1 + r_d)^2} + \cdots + \frac{C}{(1 + r_d)^n} ]
  1. 利息部分的现值(Annuity)

这条公式其实是个等比数列,公比为:

(11+rd)( \frac{1}{1 + r_d} ) an=a1×qn1a_n = a_1 \times q^{n-1} [an=a×qn1=C1+rd(11+rd)n1][ a_n = a \times q^{n-1} = \frac{C}{1 + r_d} \left( \frac{1}{1 + r_d} \right)^{n-1} ]

根据有限等比数列求和公式:

a=C1+rda = \frac{C}{1 + r_d} q=11+rdq = \frac{1}{1 + r_d}  [Sn=a1qn1q] [ S_n = a \frac{1 - q^n}{1 - q} ] PV=C1+rd×11(1+rd)n111+rdPV = \frac{C}{1 + r_d} \times \frac{1 - \frac{1}{(1+r_d)^n}}{1-\frac{1}{1 + r_d}} [111+rd=rd1+rd][ 1 - \frac{1}{1 + r_d} = \frac{r_d}{1 + r_d} ] [PVcoupons=C1+rd11(1+rd)nrd1+rd=C11(1+rd)nrd]=Crd(11(1+rd)n)[ PV_{\text{coupons}} = \frac{C}{1 + r_d} \cdot \frac{1 - \frac{1}{(1 + r_d)^n}}{\frac{r_d}{1 + r_d}} = C \cdot \frac{1 - \frac{1}{(1 + r_d)^n}}{r_d} ] = \frac{C}{r_d} \cdot (1 - \frac{1}{(1+r_d)^n})
  1. 本金
[PVprincipal=FV(1+rd)n][ PV_{\text{principal}} = \frac{FV}{(1 + r_d)^n} ]
  1. 债券总价值
[PV=Crd(11(1+rd)n)+FV(1+rd)n][ PV = \frac{C}{r_d} \left( 1 - \frac{1}{(1 + r_d)^n} \right) + \frac{FV}{(1 + r_d)^n} ]

Resources